碳酸钙土土粘聚力

微生物诱导碳酸钙沉积(MICP)固化土体研究 进展
2024年5月14日 — 微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结, 2024年8月1日 — 黏聚力与内摩擦角提升原因在于MICP加固生成的碳酸钙通过粘结粉土颗粒,填充堵塞颗粒间孔隙,使平均非孔隙面积比增大,进而提升土体强度。 服务 把本文推荐给朋友微生物加固粉土的强度特性及加固机理研究

基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
2019年2月12日 — 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理, 基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良

纳米碳酸钙影响下红黏土强度特性试验研究
2021年2月27日 — 摘要为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利 用TSZ 1型三轴试验仪进行不固结不排水三轴压缩试验,分 析了在不同干密度条件下各梯度纳米 2023年8月6日 — 碳酸钙是黏粒和有机质含量低的钙质土壤中的主要胶结物质。 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对 胶结物质驱动的土壤团聚体形成过程与稳定机制 issas

MICP作用下根土复合体强度研究 汉斯出版社
2024年8月31日 — 微生物诱导碳酸钙沉淀作用 (Microbial Induced Carbonate Precipitation,即MICP)在岩土工程学和微生物学的交叉学科中是研究的热门,是一种环境友好的生物介质 2024年6月5日 — 微生物诱导碳酸钙沉淀(MICP)技术是新兴的岩土工程绿色加固技术,在黄土边坡加固方面具有良好的应用前景。 MICP加固黄土受多种因素影响,除了外界环境、材料 微生物诱导碳酸钙沉淀加固黄土影响因素试验研究

Direct Shear Test of RootSoil Complex under
2021年1月1日 — 本文提出微生物诱导碳 酸 钙沉淀作用 (Microbial Induced Carbonate Precipitation, MICP 协同植被护坡 用于边坡工程。 通过 MICP 作用加固根土复合体的直剪试验,得到以下结论:1) 根土复合体在含根量 2021年9月3日 — 微生物诱导碳酸钙沉淀 MICP)是一种利用环境友好的微生物加固岩土体的新方法 。 试验结果表明, MICP加 固砂的刚度,强度和剪胀性增强,可压缩性 微生物加固砂土弹塑性本构模型 (The elastoplastic

膨润土碳酸钙混合物的力学特性
2018年5月7日 — 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 2021年2月27日 — 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,纳米碳酸钙影响下红黏土强度特性试验研究

基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
摘要: 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通过数字图像处理技术对土样的崩解过程进行定量分析和评价土体抗剪强度作为结构设计最重要的参数,受含水率影响较大,随着淤泥中含水率增大,其呈降低趋势。高含水率亦影响土体粘聚力,使土颗粒间作用力减弱。黄丽珊的研究表明,淤泥的粘聚力与液限和含水率之差呈正比,表明粘聚力受含水率影响。淤泥(土力学)百度百科

木质素联合固化粉土的试验研究
2021年2月24日 — 土颗粒之间相互联结最好,红圈标出的是木质素和 碳酸钙联结在一起形成的花瓣状的胶结物,填充了 土颗粒之间的孔隙,说明木质素为碳酸钙提供了成 核位点,弥补了EICP技术中没有成核位点的缺陷, 在宏观上可以体现为提高抗剪强度和黏聚力,改善 土体的工 风化程度整体趋势随深度减小而增强,风化强度最大相差1518%。风化程度与黏粒比例、阳离子交换量、黏聚力成正相关。上层风化程度大,黏粒比例高,黏聚力大,土体稳定; 下层风化程度弱,黏粒比例低,黏聚力小更易被侵蚀,造成土体易崩塌,形成崩岗。鄂东南花岗岩崩岗剖面土体风化特征

微生物诱导碳酸钙沉积(MICP)固化土体研究进展 汉斯出版社
2 天之前 — 土地荒漠化严重危害人类的生存和可持续发展。微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结,从MICP的国内外发展与现状、MICP固化土体的力学特性、MICP固化土体的作用机理分析了MICP对固化土体 在一定含水量的条件下,因土粒中含有盐分,使土粒间的距离增大,而内聚力及内摩擦角则随之减小,土体的强度降低。因此,盐渍土的强度与含水量关系密切,含水量较低且含盐量高时,土的强度就越高,反之较低。 (7)毛细水作用盐渍土的工程性质 百度文库

基于正交试验的千枚岩相似材料配比研究 csust
2024年2月27日 — 黏聚力、泊松比的影响较显著,其中对黏聚力和泊松比的影响最大,贡献率分别为83.9%、78.0%; 膨润土质量比对相似材料内摩擦角和泊松比的影响仅次于石膏与河砂的质量比,贡献率分别为2009年8月4日 — 瑚、海藻、贝壳等)成因的、富含碳酸钙或碳酸镁等物质的特殊岩土介质,主要分布于热带海洋中。钙质 砂的主要化学成分为CaCO。。钙质砂有骨骸、球粒、包粒和团粒4种颗粒类型[1’2]。棱角大,有内孔隙,孔隙比高,易破碎,是钙质砂的主要特征[1’2]。钙质砂的胶结性及对力学性质影响的实验研究。

大尺寸工程模型试验中的相似材料配比试验研究 NEU
2020年5月19日 — 大型物理模型试验是研究复杂工程问题的重要方法,如何快速、准确地确定相似材料配比是试验中至关重要的一环为降低试验成本、简化试验步骤、充分调用原料性能,采用河砂、水泥和石膏这三种最普通的原料,以骨胶比(河砂与水泥石膏的质量比)和水膏比(水泥与石膏的质量比)为变量,进行了45 2023年8月6日 — 碳酸钙对团聚体稳定性的作用可能依赖于碳酸钙颗粒分布和黏粒含量,高含量黏粒和细颗粒碳酸钙对土壤有很好的团聚作用 [29]。 在弱碱性氧化环境的黄土堆积过程中,粉尘堆积物可通过雨水、霜雪、生物活动等作用发生次生碳酸盐化,次生碳酸盐与黄土粉尘中黏粒物质结合形成微团聚体 [ 30 ] 。胶结物质驱动的土壤团聚体形成过程与稳定机制 issas

土壤地理第五章棕壤棕壤于褐土 百度文库
棕壤、褐土关系 1都有粘化过程:棕壤以淋淀粘化(机械淋淀粘化) 为主,褐土淋溶粘化和残积粘化均有,以后者为主。 2CaCO3积聚,与降水量有关,也和母质有关,碳 酸盐母质上发育为褐土,而非碳酸钙母质发育为棕 壤。2020年6月11日 — 摘 要:微生物诱导碳酸钙沉积(MICP )能够加固散粒土体,是岩土工程中新兴绿色加固技术之一。然而,关于微生物加固机理以及矿化形成过程的研究尚不多见。基于微流控芯片技术开发了微生物加固可视化系统,利用该系统开展了微生物诱导 《岩土工程学报》2020年第6期中文摘要

膨润土碳酸钙混合物的力学特性
2018年5月7日 — 膨润土碳酸钙混合物的力学特性 秦爱芳(), 傅贤雷, 阮坤林, 贾旭 上海大学 土木工程系,上海 收稿日期: 出版日期 非饱和样的抗剪强 度随 CaCO 3 含量变化存在一个峰值,黏聚力先增后减,饱和样则相反; 2021年2月27日 — 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,纳米碳酸钙影响下红黏土强度特性试验研究

EICP木质素联合固化粉土的试验研究
2021年2月24日 — EICP木质素联合固化技术能提高土体的抗剪强度和粘聚力,通过微观试验可以看出,木质素的作用机理主要是改变了EICP产生分散碳酸钙的方式,为碳酸钙提供成核位点,在土颗粒间隙中将无规律的碳酸钙聚拢成型。2011年2月23日 — 等碳酸钙 含量高的原料,经900℃~1100℃煅烧而 成。梁波等[1]通过击实特性、静动力强度等试验 相比差别较小,强度的提高主要表现在改良土黏聚 力 的增长上。三种配比改良土与重塑黄土相比,在抗剪强度 方面有显著提高,尤其体现在黏聚 改良黄土强度特性与工程处置试验研究

微生物加固砂土弹塑性本构模型
2022年8月29日 — 剪切过程中碳酸钙的胶结作用逐渐破坏但附着在砂颗 粒表面的碳酸钙未被完全磨损掉,同时胶结破坏后的 碳酸钙转化为种沉积形式。胶结作用退化造成强 度降低,出现应变软化现象和剪胀。当胶结作用完全 丧失后,附着在砂颗粒表面的碳酸钙仍会使其 2022年1月6日 — 在土孔隙中生成的碳酸钙晶体,如方解石等,主要会给土体的物理力学性质带来两方面的变化。一是土体强度和刚度的增长,即生物胶结;二是土 体渗透性的下降,即生物防渗,如图1所示。大量 的研究结果表明,MICP过程生成的碳酸钙结晶体,生物固土用于防风固沙的研究进展 NJU

纳米碳酸钙影响下红黏土强度特性试验研究
为了探寻纳米碳酸钙对桂林红黏土力学强度特性的影响机理,利用TSZ1型三轴试验仪进行不固结不排水三轴压缩试验,分析了在不同干密度条件下各梯度纳米碳酸钙掺量对重塑红黏土黏聚力、内摩擦角、抗剪强度以及应力应变曲线的影响,从红黏土矿物颗粒胶体化学的角度阐释纳米碳酸钙对红黏土 摘要: 我国土遗址分布广泛,种类繁多,具有较高的历史文化及科学价值部分土遗址在发掘开挖后,遭受环境中温度,湿度,风侵,日蚀等多种自然及人为因素的干预,将对土遗址造成不同程度的损坏因此,加强对土遗址的保护与加固技术研究具有重要意义脲酶诱导碳酸钙沉淀(EICP)技术,通过脲酶将尿素水解 一种土遗址城墙EICP加固技术试验研究用样本提取装置

水泥土搅拌桩 百度文库
生成不溶于水的碳酸钙,能使水泥土的强度增长, 但速度较慢,幅度较小。 水泥和软土搅拌越充分,混合越均匀,则水泥土强 当水泥土qu=054MPa时,其粘聚力C在1001000kPa 概述 技术发展 概述 技术发展 国内: 1977年由冶金部建筑研究总院和交通部 2022年11月5日 — 摘要: 膨胀土因其吸水膨胀、失水收缩的特性往往会对工程结构造成不可逆的损伤,改性膨胀土便是通过添加改性材料来改变其微观结构与力学性质,改善土体的胀缩特性,解决因胀缩变形而引发的膨胀土结构破坏问题。在以往的研究中,国内外学者通过对膨胀土力学性质与内部结构的探索,逐步 改性膨胀土胀缩变形的研究进展 汉斯出版社

微生物加固土体技术研究进展学报期刊咨询网
2019年9月11日 — [摘要]微生物诱导碳酸钙沉淀技术(MICP)加固土体是近年来发展起来的新兴技术。 作用于膨胀土时,通过代谢产物减小结合水膜的厚度,会减小黏聚力并增大内摩擦角,达到提高土体强度的效果;许朝阳等 [16]发现多糖粘胶菌对提高粉土强度有显著 万有元等(2017)利用玻璃纤维和石灰改良红粘土,研究改良土的压缩性质,结果表明,在红粘土中掺入一定量的玻璃和石灰 (2017)采用三轴试验研究纳米碳酸钙改良红粘土的机理,结果表明,往红粘土中掺入纳米碳酸钙会增加红粘土黏聚力 、内摩擦 红粘土改良研究现状综述 百度文库

微生物诱导碳酸钙沉淀加固黄土影响因素试验研究
2024年6月5日 — 微生物诱导碳酸钙沉淀(MICP)技术是新兴的岩土工程绿色加固技术,在黄土边坡加固方面具有良好的应用前景。MICP加固黄土受多种因素影响,除了外界环境、材料特性和加固方式等因素外,钙源、胶结液浓度、养护龄期和养护方式等对微生物加固黄土也起着决定 本文选取5种碳酸钙含量(429、1745、9866、13185、14382 g/kg)差异显著的北方碱性旱地农田土壤(黑土、淡黑钙土、潮土、灰钙土和黄绵土)为研究对象,分析土壤及其各粒级团聚体中有机碳、碳酸钙和不同形态钙含量的分布特征及相关性,探讨碳酸钙对碱性旱地土壤有机碳的影响。石灰性土壤团聚体中钙形态特征及其与有机碳含量的关系

大豆脲酶促沉碳酸钙改良砂土地基承载特性模型试验研究:基于
2022年1月4日 — 摘要:大豆脲酶促沉碳酸钙(SUICP)是一种新型土体改良技术,碳酸钙充填土内孔隙、胶结土颗粒,必将提高地基承载 力。为了定量研究SUICP 灌浆对砂土地基承载力的提高作用,开展了内径385 cm、高度100 cm的砂柱模型试验,碳酸钙沉2019年9月6日 — 高,但是粘聚力与内摩擦角的增大规律并不相同:粘聚力的增大速率随水泥掺量的增 大而不断减小,内摩擦角的增大规律随水泥掺量的增大而呈“S”型。关键词:红黏土;水泥土;直剪试验;内摩擦角;粘聚力 中图分类号:TU411 文献标志码:B 文章编号:16730062(2019)04水泥掺量对红粘土固结体抗剪特性影响的试验研究

微生物固化砂土强度增长机理及影响因素试验研究
2020年1月5日 — 微生物固化砂土强度的增长主要源于碳酸钙晶体对土体黏 聚强度的提高。微生物固化砂土的强度主要包括土骨架强度和碳酸钙晶体胶结强度两部分,前者受土体性质及相关参数影响,后者主要取决于碳酸钙 2022年1月6日 — 在土孔隙中生成的碳酸钙晶体,如方解石等,主要会给土体的物理力学性质带来两方面的变化。一是土体强度和刚度的增长,即生物胶结;二是土 体渗透性的下降,即生物防渗,如图1所示。大量 的研究结果表明,MICP过程生成的碳酸钙结晶体,生物固土用于防风固沙的研究进展 NJU

微生物加固砂土弹塑性本构模型 (The elastoplastic
2021年9月3日 — 微生物诱导碳酸钙沉淀 MICP)是一种利用环境友好的微生物加固岩土体的新方法 。 试验结果表明, MICP加 固砂的刚度,强度和剪胀性增强,可压缩性 典型黄土:黄色、粉粒为主、富含碳酸钙、大孔 隙和垂直解理发育 ,具湿陷性。 黄土状土:不完全具备典型黄土特点 大于0075mm的颗粒超过全质量85粒径大于0075mm的颗粒超过全质量ip17的土粘土粉质粘土土土粘粘性性土土粒径大于0075mm的颗粒 第四章各类土的工程地质特征 百度文库

纳米碳酸钙影响下红黏土强度特性试验研究
2021年2月27日 — 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,土中某点最大主应力为350,土的内摩擦角为30°,粘聚力为0,土体达到极限平衡状态时最小主应力和产生破坏时破坏面与最大主应力作用面的夹角为( ) A 1167 百度试题 结果1 题目 土中某点最大主应力为350,土的内摩擦角为30°,粘聚力为0,土体达到极限平衡状态时 土中某点最大主应力为350,土的内摩擦角为30°,粘聚力为0,土

酸性溶液浸泡下原状黄土物理力学特性试验研究
黄土中存在大量碳酸钙胶结物,该胶结物对黄土力学性状的影响很大。采用浓度为01,1和2 mol/L的盐酸溶液,开展了原状黄土试样的浸泡试验,测定了不同时间浸泡溶液中钙离子的浓度,开展了经不同时间浸泡土样的颗粒分析试验、固结试验及剪切试验,分析了酸性溶液浸泡下原状黄土力学特性及其 2021年2月27日 — 角降低较小;密实度90%时,含水量大于5%,黏聚力降低较小;(3)密实度对吹填珊瑚砂的黏聚力影响规律不明显,密实度对 内摩擦角影响较显著,当含水量大于5%时,随着密实度的增加内摩擦角显著增大;(4)在高荷载条件下,含水量和密实度对中国南海岛礁吹填珊瑚砂剪切力学特性

与团聚特征的影响
2017年4月8日 — 质含量较高、粘粒和氧化铁铝含量较低的土壤中,有 机质的胶结作用占主导地位[4]而在有机质含量不 高、粘粒和氧化铁铝较高的土壤中,团聚体的形成主 要靠粘粒的内聚力及铁铝氧化物的胶结作用[4G6] 在粘粒和有机质含量低的钙质土壤中,碳酸钙成为2018年4月3日 — 下,试样强度随含蜡率减小而增大,胶结试样的强度主要取决于膨润土的量,其中含蜡率在667% 到50%之间时,强度增长较缓;③试样的黏聚力随含蜡率的变化存在最小值,同一含蜡率下,钢珠 试样黏聚力较大,内摩擦角一般较小,且含蜡率对玻璃珠试样内摩擦角的影响比人工胶结球状颗粒材料的三轴试验研究

膨润土碳酸钙混合物的力学特性
2018年5月7日 — 摘要: 通过在膨润土中掺入不同量的 CaCO 3 模拟高放射性核废料(highlevel radioactive waste,HLW)处置库周围地 下水侵入屏障生成 CaCO 3 后膨润土性状的变化。 通过配置 4 组不同 CaCO 3 掺入量的膨润土进行了有荷膨胀试验、压缩试验和直剪试验,运用太沙基一维固结理论计算了渗透系数,并采用扫描电子显微镜 2021年2月27日 — 根据不同起始干密度下,各纳米碳酸钙掺量对 重塑红黏土黏聚力、内摩擦角的影响绘出各指标间 关系曲线图(图1,图2)。由图1、图2可见,在不同 纳米碳酸钙掺量下重塑红黏土的黏聚力、内摩擦角 与起始干密度的关系分别为指数函数和线性函数,纳米碳酸钙影响下红黏土强度特性试验研究

基于微生物诱导碳酸钙沉积技术的黏性土水稳性改良
摘要: 采用微生物诱导碳酸钙沉积(MICP)技术对黏性土进行改性处理,以改善其水稳性与抗侵蚀能力 利用喷洒法将配制的微生物菌液及胶结液先后喷洒至黏性土表层进行MICP处理,并开展一系列崩解试验,通过数字图像处理技术对土样的崩解过程进行定量分析和评价土体抗剪强度作为结构设计最重要的参数,受含水率影响较大,随着淤泥中含水率增大,其呈降低趋势。高含水率亦影响土体粘聚力,使土颗粒间作用力减弱。黄丽珊的研究表明,淤泥的粘聚力与液限和含水率之差呈正比,表明粘聚力受含水率影响。淤泥(土力学)百度百科

木质素联合固化粉土的试验研究
2021年2月24日 — 土颗粒之间相互联结最好,红圈标出的是木质素和 碳酸钙联结在一起形成的花瓣状的胶结物,填充了 土颗粒之间的孔隙,说明木质素为碳酸钙提供了成 核位点,弥补了EICP技术中没有成核位点的缺陷, 在宏观上可以体现为提高抗剪强度和黏聚力,改善 土体的工 2018年4月1日 — 崩岗是我国南方特殊的一种土壤侵蚀现象,危害严重; 研究崩岗剖面土体风化特征有利于进一步了解崩岗发生机理,为崩岗防治提供理论依据。本试验通过采集通城县花岗岩崩岗土壤,测定其颗粒组成、阳离子交换量、黏聚力和各氧化物所占质量分数; 定量分析不同层次氧化物质量分数; 计算风化强度 鄂东南花岗岩崩岗剖面土体风化特征

微生物诱导碳酸钙沉积(MICP)固化土体研究进展 汉斯出版社
2 天之前 — 土地荒漠化严重危害人类的生存和可持续发展。微生物诱导碳酸钙沉积技术(MICP)是近年来兴起的经济、环保和耐久的防风治沙方法。为了研究MICP固化土体的工程特性,本文对MICP进行了系统的归纳总结,从MICP的国内外发展与现状、MICP固化土体的力学特性、MICP固化土体的作用机理分析了MICP对固化土体 在一定含水量的条件下,因土粒中含有盐分,使土粒间的距离增大,而内聚力及内摩擦角则随之减小,土体的强度降低。因此,盐渍土的强度与含水量关系密切,含水量较低且含盐量高时,土的强度就越高,反之较低。 (7)毛细水作用盐渍土的工程性质 百度文库

基于正交试验的千枚岩相似材料配比研究 csust
2024年2月27日 — 黏聚力、泊松比的影响较显著,其中对黏聚力和泊松比的影响最大,贡献率分别为83.9%、78.0%; 膨润土质量比对相似材料内摩擦角和泊松比的影响仅次于石膏与河砂的质量比,贡献率分别为2009年8月4日 — 瑚、海藻、贝壳等)成因的、富含碳酸钙或碳酸镁等物质的特殊岩土介质,主要分布于热带海洋中。钙质 砂的主要化学成分为CaCO。。钙质砂有骨骸、球粒、包粒和团粒4种颗粒类型[1’2]。棱角大,有内孔隙,孔隙比高,易破碎,是钙质砂的主要特征[1’2]。钙质砂的胶结性及对力学性质影响的实验研究。